Why should we work?

Originally shared by Yonatan Zunger

Charlie Stross has a challenging and very interesting essay asking the question: Why should we work?

http://www.antipope.org/charlie/blog-static/2014/04/a-nation-of-slaves.html

We tend to talk around this issue a lot, but a key issue is this: as productivity (the amount of stuff of value we can create per hour of work) goes up, how much of that increase do we put in to increasing the amount of stuff of value we create, and how much do we put into decreasing the amount of work we do — or put another way, what’s the value of leisure?

Another way to look at this is to consider an extreme limit. Say that tomorrow, someone invented a couple of Magic Boxes. One of them lets you pour cheap raw materials (dirt, rocks) in one end, push a button, and anything you request, from a hamburger to a car, comes out the other end. Another one will answer any question you ask, organize anything you need organized, do research for you, synthesize the data, explain things to you, and so on. A third one will pick up any physical item and take it anywhere in the world you need to be. If it’s not obvious, these magic boxes are just the limits of technology we already have.

Now in this post-Magic Box world, a lot of good things happen. For one thing, magic boxes themselves are cheap, because they can be made by magic boxes. (Someone will try to ban that, of course, and this will work about as well as banning people from humming songs) It’s hard to go hungry when you can just dump dirt into your magic box and get a meal. Likewise, any clothing, shelter, and medicine you might need is just there, and another magic box can help you figure out which things will help you satisfy your needs. If you can afford the cheapest magic box, you can have the riches of Croesos.

On the other hand, you might notice that a huge fraction of all jobs in the world would cease to exist as well. Almost the entire manufacturing, service, logistics, or information sectors would cease to exist. Pretty much the only jobs remaining would be to come up with new designs to fit in to the magic boxes — and it’s not hard to imagine that magic boxes could do a lot of that, too. 

If we kept running the world the way we do now — the way it would happen if someone literally invented these boxes tomorrow — then we would find ourselves in a very strange state. Having successfully pushed productivity to infinity, and eliminated all possible cause for want in the world, almost everyone in the world would be suddenly unemployed, unable to access a magic box, and would starve to death.

This is obviously stupid.

The flaw in this, of course, is that our tendency to tie work to access to resources makes no sense in a world where the total amount of actual work to be done is much less than the total number of people around to do it. In this post-Box world, there simply aren’t enough jobs for everyone.

That’s not a bad thing for the basic reason that Stross explains. Most jobs aren’t things you would want for their own sakes. Consider: If you suddenly inherited £100M, would you stay in your job? If you would — if you would do this job even if it had nothing to do with earning money — then your job is actually worth something to you in its own right, and you would probably keep doing it in a post-Box world. If, on the other hand, you would leave your job immediately, then your job has no value of its own to you: it exists only as a means to an end, and as soon as you have a better means, you’re out of there.

The reason this is important is that we’re already in the early days of the Magic Box Economy. When we see jobs disappearing around the world and not being replaced by new jobs — entire trade sectors vanishing — and the overall actual unemployment rate (not the rate of people looking for work, but the rate of people who aren’t working for pay at all) rising, but at the same time overall global productivity is increasing, what we’re seeing is that many of the jobs which used to be necessary for us as a species to survive are simply no longer needed. 

However, our economy, and our thinking about the economy, continues to be based on the idea that jobs are good, and working is good, and if you aren’t trying to work harder, something must be wrong with you. Which means that, as people’s jobs become completely obsoleted, with no useful “retraining” available since the total number of jobs has permanently gone down, we conclude that these people must therefore be drains on our society, and cut them off from the magic box, even though a surprisingly small amount of money is (in our semi-Box economy) already enough to survive.

What I’ve talked about above is the problem — namely, how to manage the transition between a work-based economy and a magic box economy. There have been many solutions proposed to this, and I’m not going to go into all of them now. (For the record, I suspect that the “universal basic income” approach is probably the simplest and best solution, although my mind is by no means made up)

But it’s come time to start thinking about this: As our wealth goes to infinity, how do we avoid starving to death?

On the quantum basis of consciousness…

Originally shared by David Brin

The recent discovery of quantum vibrations in microtubules inside brain neurons appears to corroborate claims that consciousness derives from deeper-level, finer-scale activities inside brain neurons. The eminent mathematical physicist Sir Roger Penrose in the 1990s suggested that quantum vibrational computations in microtubules were “orchestrated” (“Orch”) by synaptic inputs and memory stored in microtubules.  They may be the seat of stored information that neurons (and glia exchanges) intermediate.  Moreover, in a new development it is thought that Microtubule quantum vibrations (e.g. in the megahertz frequency range) appear to interfere and produce much slower EEG “beat frequencies.”

http://www.sciencedirect.com/science/article/pii/S1571064513001188

A lead author suggests “Consciousness depends on anharmonic vibrations of microtubules inside neurons, similar to certain kinds of Indian music, but unlike Western music, which is harmonic.”  How cool and weird!  Only I am less interested in the mystical implications about roots of consciousness than whether this nails in “intracellular computing” as a major part of brain function.  If so, then that boosts by many orders of magnitude how many transactions take place to comprise our minds.  And many more Moore’s Law doublings will be needed before that number can be replicated, in silico.

http://www.kurzweilai.net/discovery-of-quantum-vibrations-in-microtubules-inside-brain-neurons-corroborates-controversial-20-year-old-theory-of-consciousness

Yet more evidence that Democratic States are better run than GOP States

 

Originally shared by Douglas County DFL

Yet more evidence that Democratic States are better run than GOP States 

Rankings based on 14 measurements of raw data that Politico Magazine rounded up “from reputable sources like the Census Bureau, the Centers for Disease Control and Prevention, and the FBI, and on important factors such as high school graduation rates, per capita income, life expectancy and crime rate.”  http://www.politico.com/magazine/story/2014/01/states-of-our-union-are-not-all-strong-102547.html

One can also examine other metrics to see this very clear pattern:

Red States rake in far more in federal tax revenue than they contribute. More of that borrow and spend fiscal conservatism!  http://www.politifact.com/truth-o-meter/statements/2012/jan/26/blog-posting/red-state-socialism-graphic-says-gop-leaning-state/

More comparisons:

http://www.nytimes.com/imagepages/2009/06/27/opinion/20090627blowchart.html

http://i.imgur.com/kpb5A.png

http://www.vaughns-1-pagers.com/politics/red-blue-states-summary.htm

 

HOW TO MAKE SYMBOLS WITH KEYBOARD

Originally shared by John McGarvey

HOW TO MAKE SYMBOLS WITH KEYBOARD

Alt + 0153….. ™… trademark symbol
Alt + 0169…. ©…. copyright symbol
Alt + 0174….. ®….registered trademark symbol
Alt + 0176 …°……degre­e symbol
Alt + 0177 …±….plus-or­-minus sign
Alt + 0182 …¶…..paragraph mark
Alt + 0190 …¾….fractio­n, three-fourths
Alt + 0215 ….×…..multi­plication sign
Alt + 0162…¢….the cent sign
Alt + 0161…..¡….. .upside down exclamation point
Alt + 0191…..¿….. ­upside down question mark
Alt + 1………..smiley face
Alt + 2 ……☻…..bla­ck smiley face
Alt + 15…..☼…..su­n
Alt + 12……♀…..female sign
Alt + 11…..♂……m­ale sign
Alt + 6…….♠…..s­pade
Alt + 5…….♣…… ­Club
Alt + 3…………. ­Heart
Alt + 4…….♦…… ­Diamond
Alt + 13……♪…..e­ighth note
Alt + 14……♫…… ­beamed eighth note
Alt + 8721…. ∑…. N-ary summation (auto sum)
Alt + 251…..√…..s­quare root check mark
Alt + 8236…..∞….. ­infinity
Alt + 24…….↑….. ­up arrow
Alt + 25……↓…… ­down arrow
Alt + 26…..→…..ri­ght arrow
Alt + 27……←…..l­eft arrow
Alt + 18…..↕……u­p/down arrow
Alt + 29……↔… left right arrow

Melanoma

Originally shared by Corina Marinescu

Melanoma

Focusing on the cellular biology of melanocytes, this 3D visualization details the rising incidence of melanoma and the importance of early detection.

Animation via XVIVO

the hidden section on your disk drive accessible by using addresses past the end of your drive…

Originally shared by Dragos Ruiu

Host Protected Area: the hidden section on your disk drive accessible by using addresses past the end of your drive (which your OS usually doesn’t let you do).

https://en.wikipedia.org/wiki/Host_protected_area

Tools to manipulate this hidden area:

– HDAT2    https://www.hdat2.com/

– hparemove (not found)

– MHDD http://hddguru.com/software/2005.10.02-MHDD/

– TAFT http://www.vidstrom.net/stools/taft/

– hdaparm Windows  https://sites.google.com/site/disablehddapm/  (and hdaparm Linux)

– IBM.Hitachi Drive Feature Tool http://hddguru.com/software/2006.01.20-Hitachi-Drive-Feature-Tool/

– Sleuth Kit http://www.sleuthkit.org/

– FreeBSD hw.ata.setmax sysctl

There is a lot of discussion in various online mathematical forums currently about the interpretation, derivation,…

Originally shared by Terence Tao

There is a lot of discussion in various online mathematical forums currently about the interpretation, derivation, and significance of Ramanujan’s famous (but extremely unintuitive) formula

1+2+3+4+… = -1/12   (1)

or similar divergent series formulae such as

1-1+1-1+… = 1/2 (2)

or

1+2+4+8+… = -1. (3)

One can view this topic from either a pre-rigorous, rigorous, or post-rigorous perspective (see this page of mine for a description of these three terms: http://terrytao.wordpress.com/career-advice/there%E2%80%99s-more-to-mathematics-than-rigour-and-proofs/  ).  The pre-rigorous approach is not particularly satisfactory: here one is taught the basic rules for manipulating finite sums (e.g. how to add or subtract one finite sum from another), and one is permitted to blindly apply these rules to infinite sums.  This approach can give derivations of identities such as (1), but can also lead to derivations of even more blatant absurdities such as 0=1, which of course makes any similar derivation of (1) look quite suspicious.

From

a rigorous perspective, one learns in undergraduate analysis classes the notion of a convergent series and a divergent series, with the former having a well defined limit, which enjoys most of the same laws of series that finite series do (particularly if one restricts attention to absolutely convergent series).  In more advanced courses, one can then learn of more exotic summation methods (e.g. Cesaro summation, p-adic summation or Ramanujan summation) which can sometimes (but not always) be applied to certain divergent series, and which obey some (but not all) of the rules that finite series or absolutely convergent series do.  One can then carefully derive, manipulate, and use identities such as (1), so long as it is made precise at any given time what notion of summation is in force.  For instance, (1) is not true if summation is interpreted in the classical sense of convergent series, but it is true for some other notions of convergence, such as Ramanujan convergence, or a real-variable analogue of that convergence that I describe in this post:

 http://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/#comment-265849

From a post-rigorous perspective, I believe that an equation such as (1) should more accurately be rendered as

1+2+3+4+… = -1/12 + …

where the “…” on the right-hand side denotes terms which could be infinitely large (or divergent) when interpreted classically, but which one wishes to view as “negligible” for one’s intended application (or at least “orthogonal” to that application).  For instance, as a rough first approximation (and assuming implicitly that the summation index in these series starts from n=1 rather than n=0), (1), (2), (3) should actually be written as

1+2+3+4+… = -1/12  + 1/2 infinity^2   (1)’

1-1+1-1+… = 1/2 – (-1)^{infinity} /2 (2)’

or

1+2+4+8+… = -1 + 2^{infinity}  (3)’

and more generally

1+x+x^2+x^3+… = 1/(1-x) + x^{infinity}/(x-1)

where the terms involving infinity do not make particularly rigorous sense, but would be considered orthogonal to the application at hand (a physicist would call these quantities unphysical) and so can often be neglected in one’s manipulations.  (If one wanted to be even more accurate here, the 1/2 infinity^2 term should really be the integral of x dx from 0 to infinity.)  To rigorously formalise the notion of ignoring certain types of infinite expressions, one needs to use one of the summation methods mentioned above (with different summation methods corresponding to different classes of infinite terms that one is permitted to delete); but the above post-rigorous formulae can still provide clarifying intuition, once one has understood their rigorous counterparts.  For instance, the formulae (1)’ and (3)’ are now consistent with the left-hand side being positive and diverging to infinity, and the formula (2)’ is consistent with the left-hand side being indeterminate in limit, with both 0 and 1 as limit points.  The fact that divergent series often do not behave well with respect to shifting the series can now be traced back to the fact that the infinite terms in the above identities produce some finite remainders when the infinity in those terms is shifted, say to infinity+1.

For a more advanced example, I believe that the “field of one element” should really be called “the field of 1+… elements”, where the … denotes an expression which one believes to be orthogonal to one’s application.

http://terrytao.wordpress.com/career-advice/there%E2%80%99s-more-to-mathematics-than-rigour-and-proofs

 

Some wonderfully informative maps

 

Originally shared by Murray J Brown

Some wonderfully informative maps

I’ve always loved maps. When I was a kid I couldn’t wait to get my hands on whatever map was included within the covers of the monthly National Geographic magazine. I’d spend hours poring over them, imagining adventures to be taken, sketching the routes of travel plans, and hanging them on the walls of my room.

Maps can be a remarkably powerful tool for understanding the world and how it works, but they show only what you ask them to. You might consider this, then, a collection of maps meant to inspire your inner map nerd. I’ve searched far and wide for maps that can reveal and surprise and inform in ways that the daily headlines might not, with a careful eye for sourcing and detail. I’ve included a link for more information on just about every one. Enjoy.

Part 1: 40 maps that explain the world

http://www.washingtonpost.com/blogs/worldviews/wp/2013/08/12/40-maps-that-explain-the-world/

Part 2: 40 more maps that explain the world

http://www.washingtonpost.com/blogs/worldviews/wp/2014/01/13/40-more-maps-that-explain-the-world/